Conversion of tyrosine phenol-lyase to dicarboxylic amino acid beta-lyase, an enzyme not found in nature.

نویسندگان

  • B Mouratou
  • P Kasper
  • H Gehring
  • P Christen
چکیده

Tyrosine phenol-lyase (TPL), which catalyzes the beta-elimination reaction of L-tyrosine, and aspartate aminotransferase (AspAT), which catalyzes the reversible transfer of an amino group from dicarboxylic amino acids to oxo acids, both belong to the alpha-family of vitamin B6-dependent enzymes. To switch the substrate specificity of TPL from L-tyrosine to dicarboxylic amino acids, two amino acid residues of AspAT, thought to be important for the recognition of dicarboxylic substrates, were grafted into the active site of TPL. Homology modeling and molecular dynamics identified Val-283 in TPL to match Arg-292 in AspAT, which binds the distal carboxylate group of substrates and is conserved among all known AspATs. Arg-100 in TPL was found to correspond to Thr-109 in AspAT, which interacts with the phosphate group of the coenzyme. The double mutation R100T/V283R of TPL increased the beta-elimination activity toward dicarboxylic amino acids at least 10(4)-fold. Dicarboxylic amino acids (L-aspartate, L-glutamate, and L-2-aminoadipate) were degraded to pyruvate, ammonia, and the respective monocarboxylic acids, e.g. formate in the case of L-aspartate. The activity toward L-aspartate (kcat = 0.21 s-1) was two times higher than that toward L-tyrosine. beta-Elimination and transamination as a minor side reaction (kcat = 0.001 s-1) were the only reactions observed. Thus, TPL R100T/V283R accepts dicarboxylic amino acids as substrates without significant change in its reaction specificity. Dicarboxylic amino acid beta-lyase is an enzyme not found in nature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional structure of tyrosine phenol-lyase.

Tyrosine phenol-lyase (EC 4.1.99.2) from Citrobacter freundii has been cloned and the primary sequence deduced from the DNA sequence. From the BrCN digest of the NaBH4-reduced holoenzyme, five peptides were purified and sequenced. The amino acid sequences of the peptides agreed with the corresponding parts of the tyrosine phenol-lyase sequence obtained from the gene structure. K257 is the pyrid...

متن کامل

Crystal structure of tryptophanase.

The X-ray structure of tryptophanase (Tnase) reveals the interactions responsible for binding of the pyridoxal 5'-phosphate (PLP) and atomic details of the K+ binding site essential for catalysis. The structure of holo Tnase from Proteus vulgaris (space group P2(1)2(1)2(1) with a = 115.0 A, b = 118.2 A, c = 153.7 A) has been determined at 2.1 A resolution by molecular replacement using tyrosine...

متن کامل

Stereochemistry and mechanism of reactions catalyzed by tyrosine phenol-lyase from Escherichia intermedia.

Stereochemical studies on tyrosine phenol-lyase from Escherichia intermedia have shown that the alpha, beta-elimination reactions of L-serine and D- and L-tyrosine proceed with retention of configuration at C-beta. Stereospecifically beta-tritiated L-serine is slowly racemized at C-beta. Deuterium from the alpha-position of L-tyrosine is partially transferred to C-4 of the phenol formed when th...

متن کامل

Purification and Characterization of Alginate Lyase from Mucoid Pseudomonas aeruginosa Strain 214

Pseudomonas aeruginosa is an opportunistic pathogen that causes a variety of infections in compromised patients. The ability of Pseudomonas aeruginosa to produce chronic infection is based in part on its ability to biosynthesis of biofilm, and alginate is the major polysaccharide in the synthesized biofilm. So alginate degradation is very essential in the dispersion of Pseudomonas aeruginosa bi...

متن کامل

Genetic incorporation of l-dihydroxyphenylalanine (DOPA) biosynthesized by a tyrosine phenol-lyase.

l-Dihydroxyphenylalanine (DOPA) was biosynthesized by a tyrosine-phenol lyase from catechol, pyruvate, and ammonia in Escherichia coli, and the biosynthesized amino acid was directly incorporated into proteins. Three biochemical experiments with mutant proteins containing DOPA confirmed the genetic incorporation of biosynthesized DOPA, and revealed its potential for various biochemical applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 274 3  شماره 

صفحات  -

تاریخ انتشار 1999